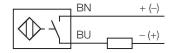


BI2U-M12E-AD4X Индуктивный датчик


Технические характеристики

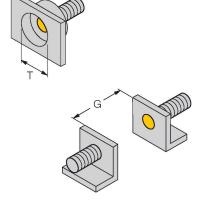
Тип	BI2U-M12E-AD4X
Идент. №	4405062
Номинальная дистанция срабатывания	2 мм
Условия монтажа	Заподлицо
Безопасное рабочее расстояние	≤ (0,81 × Sn) мм
повторяемость (стабильность) позиционирования	≤ 2 % полн. шкалы
Температурный дрейф	≤ ± 10 %
Гистерезис	320 %
Температура окружающей среды	0+70 °C
Рабочее напряжение	1065 B=
Остаточная пульсация	≤ 10 % U _{ss}
Номинальный рабочий ток (DC)	≤ 100 mA
Остаточный ток	≤ 0.8 mA
Испытательное напряжение изоляции	≤ 0.5 κB
Защита от короткого замыкания	да / Циклический
Падение напряжения при I _е	≤ 5 B
Защита от обрыва / обратной полярности	Полный
Выходная функция	2-проводн., НО контакт, 2-проводн.
Минимальный рабочий ток	≥ 3 MA
Частота переключения	0.02 κΓц
Конструкция	Цилиндр с резьбой, M12 × 1
Размеры	64 mm
Материал корпуса	Металл,CuZn,Xромированный
Материал активной поверхности	пластмасса, LCP
Колпачок	пластмасса, EPTR
Макс. момент затяжки гайки	10 Нм
Электрическое подключение	Кабель

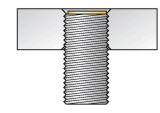
Свойства

- M12 × 1 резьбовой цилиндр
- Длинная версия
- Хромированная латунь
- коэффициент редукции = 1
- невосприимчив к магнитным полям
- 2-проводной DC, 10...65 VDC
- нормально открытый
- кабельное соединение

Схема подключения

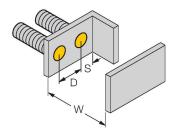
Принцип действия


Индуктивные датчики обнаруживают металлические объекты без контакта и без износа. За счет запатентованной бесферритовой 3-х катешечной системы, *Uprox®*+ датчики имеют определенные преимущества в сравнении со стандартными индуктивными датчиками. Они отличаются высокой дистанцией срабатывания, максимальной гибкостью применения, надежной работоспособностью, а также универсальностью (могут использоваться в различных областях).


Технические характеристики

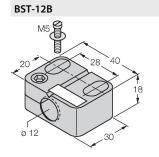
Качество кабеля	Ø 5.2 мм, LifYY, ПВХ, 2 м
Поперечное сечение проводника	2x0.34 mm²
Вибростойкость	55 Гц (1 мм)
Ударопрочность	30 g (11 мс)
Степень защиты	IP68
Средняя наработка до отказа	874 лет в соответствии с SN 29500-(Изд. 99) 40 °C
Индикация состояния переключения	светодиод, желтый

Указания по монтажу


Инструкция по монтажу/Описание

Расстояние D	24 мм
Расстояние W	3 x Sn
Расстояние Т	3 x B
Расстояние S	1.5 x B
Расстояние G	6 x Sn
Диаметр активной области В	Ø 12 мм

Все датчики с монтажом "заподлицо" *uprox*®+ резьбового цилиндрового типа также предусматривают возможность утапливаемого монтажа. Работоспособность гарантируется при вкручивании датчика на глубину половины витка резьбы.



Аксессуары

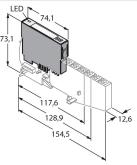
QM-12	
ß	.6
22/4	
The state of the s	
ø 12	19.5 34

Зажим-фиксатор для быстрой установки; материал: Хромированная латунь. Наружная резьба М16 × 1. Примечание. При использовании кронштейнов для быстрого монтажа дистанция переключения датчиков приближения может меняться.

6945101

Монтажный зажим для цилиндрических резьбовых датчиков, с упором; материал: РАб

6947212


6901321

Монтажный кронштейн для цилиндрических резьбовых датчиков; материал: Нержавеющая сталь A2 1.4301 (AISI 304) BSS-12 Ø 12 Ø 26,5

Монтажный зажим для цилиндрических гладких и резьбовых датчиков; материал: Полипропилен

BL20-4DI-NAMUR

6827212

4 цифровых входа соотв. EN 60947-5-6. Для датчиков NAMUR, обесточенные контакты или 2-проводн. датчики DC uprox®+.